
IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 412

A Review on Metrics in SOA

Simardeep Kaur
1
, Saloni Khanna

2

M.Tech (IT), Dept of Information Technology, Adesh Institute Of Engineering & Technology, Faridkot, India
 1, 2

Abstract: A service-oriented architecture (SOA) is an architectural pattern in computer software design in which

application components provide services to other components via a communications protocol, typically over a network.

The principles of service-orientation are independent of any vendor, product or technology. A service is a self-

contained unit of functionality, such as retrieving an online bank statement. By that definition, a service is an operation

that may be discretely invoked. However, in the Web Services Description Language (WSDL), a service is an interface

definition that may list several discrete services/operations. And elsewhere, the term service is used for a component

that is encapsulated behind an interface. Metrics play an important role in empirical software engineering research as

well as in industrial measurement programs. The metrics presented in this paper measure the difference between class

inheritance and interface programming. The metric values of class inheritance and interface prove which program is

good to use. Our goal is comparing the inheritance and interface concepts in object oriented programming through

cohesion- metrics. Complexity, Service granularity metrics

Keywords: SOA, Cohesion, complexity, granulity ,Metrics, WSDL, Inheritance, Services.

I. INTRODUCTION

Service-Oriented Architecture (SOA) is emerging as a

promising development paradigm, which is based on

encapsulating application logic within independent,

loosely-coupled stateless services, that interact via

messages using standard communication protocols and can

be orchestrated using business process languages, The

notion of a service is similar to that of a component, in that

services, much like components, are independent building

blocks that collectively represent an application. However,

services are more platform independent, business-domain

oriented, and autonomous and hence decoupled from other

services as compared with components. Service-oriented

systems in conjunction with supporting middleware

represent Service-Oriented Architecture (SOA), a more

abstract concept which is founded on the idea of discovery

and orchestration whereby a business process or workflow

can identify at runtime the most suitable services for a

particular scenario and dynamically compose them in

order to satisfy a particular domain requirement.

Moreover, in SOA, enterprises should consider services as

enablers of business processes that reflect workflows

within and between organizations, rather than treating

them simply as interfaces to software functionality.

Although SOA is becoming an increasingly popular choice

for the development of enterprise software, service-

oriented (SO) design principles are not well understood

and documented, with contradicting definitions and

guidelines making it hard for software engineers and

developers to work effectively with service-oriented

concepts . Consequently, service-oriented systems are

often developed in an ad-hoc fashion potentially resulting

in lower-quality software being produced.

An important mechanism in a SOA is the Dynamic

Discovery of services:

The interaction model of the basic SOA consists of three

key players, the service providers, the service requestors,

and the intermediating directory service. First, the service

providers register with the directory service, then clients

can query the directory service for providers and browse

the exposed service capabilities.

Typically a directory service supports:

• A look-up service for clients

• Scalability of the service model: services can be added

incrementally

• Dynamic composition of the services: the client can

decide at runtime which services to use.

Some of the constraints that apply to the SOA architectural

style are given below based on the Fig 1

 Service users send requests to service providers.

 A service provider can also be a service user.

 A service user can dynamically discover service

providers in a directory of services.

 An ESB can mediate the interaction between service

users and service providers.

Fig 1 SOA

1.1 Services:

 A service is a logical representation of a repeatable

business activity that has a specified outcome (e.g.,

check customer credit, provide weather data)

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 413

 Services are the building blocks of SOA enabled

application.

 It is basically an encapsulation of data.

 A service consists of an interface, has an

implementation.

 The service interface defines a set of operations,

which exposes its capabilities.

Static and Dynamic Services

To invoke a service provider, a service user needs to

determine the interface of the service (operations

available, expected input and output) and locate the actual

service. For static binding, as shown in Fig.2, the service

interface and location must be known when the service

user is implemented or deployed. The service user

typically has a generated stub to the service interface and

retrieves the service location from a local configuration

file. The service user can invoke the service provider

directly, and no private or public registry is involved. For

dynamic services, as shown in Fig. 3, a provider must

register the service to a registry of services. The registry is

queried by service users at runtime for the provider’s

address and the service contract. After acquiring the

required information, the service user can invoke the

operations of the service provider.

Fig 2 Static Binding

Fig 3 Dynamic Binding

1.2 Software Architecture:

 Its defines as “the structure or structures of a system,

which defines software elements, the externally

visible properties of those elements, and the

relationships among them”.

 Examples of such elements could include compilation

units and processes, each with its own related

structure.

 Software architecture is typically documented using

multiple views.

 A “view” is described as “a representation of a set of

system elements and the relationships associated with

them”.

1.3 SOA Layers:

Basically SOA aims at the provisioning of abstract

software functionality through services that can be flexibly

composed to implement business processes. The five

functional layers are as follows (bottom to top) shown in

Fig 2

 Operational systems: Represents existing IT assets,

and shows that IT investments Are valuable and

should be leveraged in an SOA.

 Service components: Realize services, possibly by

using one or more applications in the operational

systems layer. As you can see on the model,

consumers and business processes do not have direct

access to components, but just services. Existing

components can be internally reused, or leveraged in

an SOA if appropriate.

 Services: Represents the services that have been

deployed to the environment. These services are

governed discoverable entities.

 Business Process: Represents the operational artifacts

that implement business processes as choreographies

of services.

 Consumers: Represents the channels that are used to

access business processes, services, and applications.

The four non-functional layers are (left to right):

 Integration: Provides the capability to mediate, route,

and transport service requests to the correct service

provider.

 Quality of service: Provides the capability to address

the nonfunctional requirements of an SOA (for

example, reliability and availability).

 Information architecture: Provides the capability to

support data, metadata, and business intelligence.

 Governance: Provides the capability to support

business operational life cycle management in SOA.

Fig 4 SOA layers

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 414

1.4 Web Services in SOA

SOA is an architectural style, whereas Web services are a

technology that can be used to implement SOAs. The Web

services technology consists of several published

standards, the most important ones being SOAP and

WSDL. Other technologies may also be considered

technologies for implementing SOA, such as CORBA.

Although no current technologies entirely fulfill the vision

and goals of SOA as defined by most authors, they are still

referred to as SOA technologies. The relationship between

SOA and SOA technologies is represented in Fig 3

Fig 5 SOA Web Services

1.5 View

A “view” is described by Clements as “a representation of

a set of system elements and the relationships associated

with them”. Together, these definitions are saying that the

software architecture serves multiple purposes and hence

cannot be captured in a single model (i.e., a

view).Kruchten proposed the use of the five following

views:

 The logical view that supports the system’s services

provided to the end-user

 The process view that describes the synchronization

and concurrency aspects

 The development view that supports construction of

the system and management of it development.

 The physical view that maps the elements of the

previous three views onto processing nodes a fifth

view that ties the other views together by a set of

scenarios describing how the elements of the other

views cooperate Other sets of views have been

proposed. Even more views are possible and

necessary. Thus there are multiple abstractions (i.e.,

elements and their relationships) associated with a

given software architecture.

1.6 SOA Implementation in Java EE 6

In this section, we will cover how web services can be

realized using Java, one of the most widely-used enterprise

technologies. There are several web services

implementation in Java technology such as Axis2 and

CFX from Apache, Spring Web Services, JBossWS and

Glassfish Metro. However, we will only discuss Metro, a

reference implementation of Java EE web services

technologies.

Metro web services stack is fully supported in Glassfish

server which is also a reference implementation of Java

EE specifications. It mainly consists of two components:

Java API for XML-based Web Services (JAX-WS) and

Java API for REST ful Web Services (JAX-RS). Our

emphasis will be on the former rather than the latter whose

data exchange could be JSON, XML or any other data

exchange protocol and whose operations are mainly in the

form of HTTP methods such as GET, PUT, POST, or

DELETE.

II. SOFTWARE METRICS

Tools for anyone involved in software engineering to

understand varying aspects of the code base, and the

project progress. They are different from just testing for

errors because they can provide a wider variety of

information about the following aspects of software

systems:

 Quality of the software, different metrics look at

different aspects of quality, but this aspect deals with

the code.

 Schedule of the software project on the whole. Some

metrics look at functionality and some look at

documents produced.

 Cost of the software project. Includes maintenance,

research and typical costs associated with a project.

 Size/Complexity of the software system. This can be

either based on the code or at the macro-level of the

project and its dependency on other projects.

General uses of Metrics

 Software metrics are used to obtain objective

reproducible measurements that can be useful for

quality assurance, performance, debugging,

management, and estimating costs.

 Finding defects in code (post release and prior to

release),predicting defective code, predicting project

success, and predicting project risk.

 There is still some debate around which metrics matter

and what they mean, the utility of metrics is limited to

quantifying one of the following goals: Schedule of a

software project, Size/complexity of development

involved, cost of project, quality of software.

Types of Metrics

1. Requirements metrics

a. Size of requirements

b. Traceability

c. Completeness

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 415

d. Volatility

2. Product Metrics

a. Code metrics

b. Lines of code LOC

c. Design metrics – computed from requirements or design

documents before the system has been implemented

d. Object oriented metrics- help identify faults, and allow

developers to see directly how to make their classes and

objects more simple.

e. Test metrics

f. Communication metrics – looking at artifacts i.e. email,

and meetings.

III. COHESION METRICS

Cohesion refers to the degree to which the elements of

a module belong together. Thus, it is a measure of how

strongly related each piece of functionality expressed by

the source code of a software module is. Cohesion is

an ordinal type of measurement and is usually described as

“high cohesion” or “low cohesion”. Modules with high

cohesion tend to be preferable because high cohesion is

associated with several desirable traits of software

including robustness, reliability, reusability, and

understandability whereas low cohesion is associated with

undesirable traits such as being difficult to maintain, test,

reuse, and even understand. Cohesion is often contrasted

with coupling, a different concept. High cohesion often

correlates with loose coupling, and vice versa.

The software metrics of coupling and cohesion were

invented by Larry Constantine in the late 1960s as part

of Structured Design, based on characteristics of “good”

programming practices that reduced maintenance and

modification costs. Structured Design, cohesion and

coupling were published in the article Stevens, Myers &

Constantine (1974) and the book Yourdon & Constantine

(1979); the latter two subsequently became standard terms

in software engineering.

Cohesion is increased if:

The functionalities embedded in a class, accessed through

its methods, have much in common. Methods carry out a

small number of related activities, by avoiding coarsely

grained or unrelated sets of data.

Advantages of high cohesion (or “strong cohesion”) are:

Reduced module complexity (they are simpler, having

fewer operations).Increased system maintainability,

because logical changes in the domain affect fewer

modules, and because changes in one module require fewer

changes in other modules. Increased module reusability,

because application developers will find the component

they need more easily among the cohesive set of operations

provided by the module. While in principle a module can

have perfect cohesion by only consisting of a single, atomic

element – having a single function, for example – in

practice complex tasks are not expressible by a single,

simple element. Thus a single-element module has an

element that either is too complicated, in order to

accomplish a task, or is too narrow, and thus tightly

coupled to other modules. Thus cohesion is balanced with

both unit complexity and coupling.

Types of cohesion

Cohesion is a qualitative measure; meaning that the source

code to be measured is examined using a rubric to

determine a classification. Cohesion types, from the worst

to the best, are as follows:

Coincidental cohesion (worst)

Coincidental cohesion is when parts of a module are

grouped arbitrarily; the only relationship between the parts

is that they have been grouped together (e.g. a “Utilities”

class).

Logical cohesion

Logical cohesion is when parts of a module are grouped

because they are logically categorized to do the same thing,

even if they are different by nature (e.g. grouping all mouse

and keyboard input handling routines).

Temporal cohesion

Temporal cohesion is when parts of a module are grouped

by when they are processed - the parts are processed at a

particular time in program execution (e.g. a function which

is called after catching an exception which closes open

files, creates an error log, and notifies the user).

Procedural cohesion

Procedural cohesion is when parts of a module are grouped

because they always follow a certain sequence of execution

(e.g. a function which checks file permissions and then

opens the file).

Communications/informational cohesion

Communicational cohesion is when parts of a module are

grouped because they operate on the same data (e.g. a

module which operates on the same record of information).

Sequential cohesion

Sequential cohesion is when parts of a module are grouped

because the output from one part is the input to another part

like an assembly line (e.g. a function which reads data from

a file and processes the data).

Functional cohesion (best)

Functional cohesion is when parts of a module are grouped

because they all contribute to a single well-defined task of

the module.

 METRICS

Cohesion can be defined as the intra-modular functional

relatedness of a software module. As previously stated, we

can categorize cohesion is into seven levels (ranging from

low cohesion to high cohesion).

Static Cohesion Metrics

There are a lot of alternative measures which are being

proposed for measuring cohesion. A broad survey on the

current state of cohesion measurement is carried out by

Briand et al. [8] in object-oriented systems and he

provided fifteen separate measurements of cohesion.

Following is a review of these measures in the following

subsections.

Chidamber and Kemerer

The Lack of Cohesion in Methods (LCOM1) measure was

first suggested by Chidamber and Kemerer

[5].Given n methods M1, M2, …, Mn contained in a class

C1 which also contains a set of instance variables {Ii}.

http://en.wikipedia.org/wiki/Level_of_measurement#Ordinal_scale
http://en.wikipedia.org/wiki/Robustness_(computer_science)
http://en.wikipedia.org/wiki/Coupling_(computer_science)
http://en.wikipedia.org/wiki/Loose_coupling
http://en.wikipedia.org/wiki/Software_metric
http://en.wikipedia.org/wiki/Larry_Constantine
http://en.wikipedia.org/wiki/Structured_Design
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29#CITEREFStevensMyersConstantine1974
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29#CITEREFStevensMyersConstantine1974
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29#CITEREFStevensMyersConstantine1974
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29#CITEREFYourdonConstantine1979
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29#CITEREFYourdonConstantine1979
http://en.wikipedia.org/wiki/Cohesion_%28computer_science%29#CITEREFYourdonConstantine1979
http://en.wikipedia.org/wiki/Granularity#Data_granularity
http://en.wikipedia.org/wiki/Granularity#Data_granularity
http://en.wikipedia.org/wiki/Granularity#Data_granularity
http://en.wikipedia.org/wiki/Maintainability
http://en.wikipedia.org/wiki/Rubric_(academic)

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 416

Then for any method Mi we can define the partitioned set

of

P = {(Ii, Ij) | Ii ∩ Ij = φ} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ φ}

then LCOM = |P| - |Q|, if |P| > |Q| =0 otherwise

LCOM is a count of the number of method pairs whose

similarity is zero.

Example: Consider a class C with three methods M1,M2

and M3. Let {I1} = {p,q,r,s,t} and {I2} = {p,q,t } and

{I3} = {a,b,c }. {I1}∩{I2} is non-empty, but {I1}∩{ I3}

and { I2}∩{ I3} are null sets. LCOM is the (number of

Null intersections - number of non-empty intersections),

which is 1 in this case. LCOM is considered as an Inverse

cohesion measure. An LCOM value of zero specifies a

cohesive class.

Other Static Cohesion Metrics

Briand et al. classify a set of cohesion measures for object-

based systems [9,10] which are adapted in [11] to object-

oriented systems. For this adaption a class is viewed as a

collection of data declarations and methods. A data

declaration is a local, public type declaration, the class

itself or public attributes. There can be data declaration

interactions between classes, attributes, types of different

classes and methods.

They categorized the different cohesive metrics based on

the above principle into following categories:

1. Ratio of Cohesive Interactions (RCI)

2. Neutral Ratio of Cohesive Interactions (NRCI)

3. Pessimistic Ratio of Cohesive Interactions (PRCI)

4. Optimistic Ratio of Cohesive Interactions (ORCI).

Run-time/Dynamic Cohesion Metrics

Despite extensive research work conducted in the

measurement of static cohesion, only a few metrics have

been proposed for the measurement of cohesion at

runtime.

Gupta et al. Metrics

Bieman and Ott [13,14] proposed the concept of Strong

Functional Cohesion (SFC) and Weak Functional

Cohesion (WFC) and then Gupta et al.[15] redefined these

module cohesion metrics. Gupta et al.[15] commence the

dynamic cohesion measurement using program execution

based approach on the basis of dynamic slicing (dynamic

slice is the set of all statements whose execution had some

effect on the value of a given variable).

They use dynamic slices of outputs to measure module

cohesion. According to them module cohesion metrics

based on static slicing approach have got some

insufficiencies in cohesion measurement. Their approach

addresses the limitations of static cohesion metrics by

considering dynamic behavior of the programs and

designing metrics based on dynamic slices obtained

through program execution. They defined SFC as module

cohesion obtained from common defuse pairs of each type

common to the dynamic slices of all the output variables

and WFC as module cohesion obtained from defuse pairs

of each type found in dynamic slices of two or more

output variables.

Dynamic Metrics for GUI Programs

Though Graphical User Interfaces (GUIs) make the

software easier to use from user’s viewpoint however they

Increase the overall complication of the software since

GUI programs unlike conventional software are event

based systems. The special characteristics of a GUI

program imply that the traditional methods of evaluating

complexity statically may not be the suitable ones as static

analysis of source code emphasize only on the probability

that what may happen when the program is executing

whereas a dynamic analysis attempts to enumerate what

actually happened during program execution.

Mitchell and Power [16] outline a new technique for

collecting dynamic trace information from Java GUI

programs and a number of simple runtime metrics

areproposed. The exPubMet.Ob metric gives an estimation

of level of coupling present in a GUI program and The

priMet.ob metric shows that simple programs devote a

greater proportion of their method access to the internal

Working of their classes than the GUI program.

exPubMet.Ob: measure of the level of coupling within a

program at runtime.

= Number of External Public methods called/Total

Number of Objects created

priMet.ob : measure of the level of cohesiveness within a

program.

= Number of Private methods called/Total number of

objects created

IV. COUPLING METRICS

There are mainly seven different levels which we can use

to find the characteristics of complexity of software

product by establishing the correlation and

interdependence between them.

These levels are as follows:

a) Control Structure

b) Module Coupling

c) Algorithm

d) Code

e) Nesting

f) Module Cohesion

g) Data Structure

Among all of these, “Coupling” and “Cohesion” are

considered to be the most important attributes. Coupling

and cohesion are the attributes which measure the degree

or the strength of interaction and relationships among

elements of the source code, for example classes, methods,

and attributes in SOA software systems. One of the main

objectives behind Object Oriented analysis and design is

to implement a software system where classes have high

cohesion and low coupling amongst them.

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 417

Fig 6 External and Internal attributes of a software product

Coupling in existing literature

Coupling or dependency is the degree to which each

program module relies on each one of the other modules.

Stevens et al. [17] first introduced coupling in the context

of structured development techniques. According to them

“coupling is the measure of the strength of association

established by a connection from one module to another".

In their opinion, the complexity of the software product

will be dependent upon the interconnection and

interdependence between the modules. As coupling is the

degree of interdependence among the modules so that

degree can be high as well as low depending on their

bonding level.

The following is the set of different types of coupling in

the order of the precedence from highest degree to the

lowest one:

1. Content Coupling (high)

2. Common Coupling

3. External Coupling

4. Control Coupling

5. Stamp Coupling

6. Data Coupling

7. Message Coupling (low)

Fig 7 shows variety of coupling and the interdependence

among modules

Coupling Measure

To determine the complexity, it is very important and

useful to measure the coupling between modules. The

higher the inter object coupling, the more scrupulous the

testing needs to be. There are several matrices using this

concept . Number of children metric defines number of

sub-classes subordinated to a class in the class hierarchy.

Coupling between Number of Objects is that two classes

are said to be coupled if the methods of one class use the

methods or attributes of the other class. Number of

Dependencies IN is defined as the number of classes that

depend on a given class [18]. Number of Dependencies

OUT metric is defined as the number of classes on which a

given class depends. Number of Association metric was

suggested by Brian in which he stated that the number of

association per class metric is the total number of

associations a class has with other classes or with itself.

Direct Dependency is direct association between services.

This kind of dependency may exist between services

explicitly when a service itself calls other services or a

service is called by other services [19]. Indirect

Dependency between services may occur in two cases. In

the first case, when an indirect or transitive connection or

association between the services is present. In the second

case when the services share global data.

 Static Coupling Metrics

There exists a large variety of measurements for coupling.

A comprehensive review of existing measures performed

by Briand et al. [20] found that more than thirty different

measures of object-oriented coupling exist. The most

prevalent ones are explained in the following subsections:

Chidamber and Kemerer suite of Metrics

Chidamber and Kemerer propose and validate a software

metrics for object-oriented systems for the

 following basic purposes:

(a) To measure the unique aspects of Object Oriented

approach.

(b) To measure the complexity of the design.

(c) To improve the development of the software.

The most accepted and commonly used coupling metrics

amongst them are:

 Coupling Between Objects (CBO)

 Response for class (RFC)

Coupling Between Objects (CBO)

Chidamber and Kemerer first define a measure CBO for a

class as, a count of the number of non-inheritance related

couples with other classes [5]. If the methods of one class

use the methods or attributes of the other that implies that

the objects of both of the classes are coupled with each

other. To improve the modularity of a software the inter

coupling between different classes should be kept to a

minimum. Beside reusability a high coupling also has a

second weakness, a class that is coupled to other classes is

susceptible to changes in those classes and as a result it

becomes more difficult to maintain and becomes more

error-prone. Additionally it is also harder to test a heavily

coupled class in isolation. The class becomes so

ambiguous that it is quite difficult to understand it.

Therefore the number of dependencies should be kept at a

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 418

minimum. They further refined this definition by saying

that CBO for a class is a count of the number of other

classes to which it is coupled.

Response for class (RFC)

The response set (RS) of a class is a set of methods that

can potentially be executed in response to a message

received by an object of that class. RFC is used to measure

the number of different methods that can be executed

when an object of that class receives a message (when a

method is invoked for that object). There are some other

important metrics discussed in this direction which

measure the degree of coupling among different classes

and hence are useful to determine the complexity of the

software product. Message Passing Metrics (Li and Henry)

recognizes a number of metrics that can predict the

maintainability of a design. There are two measures,

message passing coupling (MPC) and data abstraction

coupling (DAC). Message Passing Coupling measures the

numbers of messages passing among objects of the class.

Data Abstraction Coupling Metric (DAC) measures the

number of Abstract Data Types defined in a class. This

metric is used to measure the number of instantiations of

other classes within the given class. Also the Afferent and

Efferent Coupling Metric is given by Martin. Afferent

coupling is harder to determine and much more valuable.

It measures how many other classes use the current class.

Efferent coupling determines how many number of classes

the current class references. It is easy to find out via

simple inspection: open the class in question and count the

references (in fields and parameters) to other classes.

V. SOFTWARE COMPLEXITY

Software complexity, deals with how difficult a program is

to comprehend and work with [21]. Software

maintainability [21], is the degree to which characteristics

that hamper software maintenance are present and

determined by software complexity. Software complexity

is based on well-known software metrics.

Various software complexity metrics invented and can be

categorized into two types:

1) Static metrics

Static metrics are obtainable at the early phases of

software development life cycle (SDLC). These metrics

deals with the structural feature of the software system and

easy to gather. Static complexity metrics estimate the

amount of effort needed to develop, and maintain the code.

2) Dynamic metrics

Dynamic metrics are accessible at the late stage of the

software development life cycle (SDLC). These metrics

capture the dynamic behavior of the system and very hard

to obtain and obtained from traces of code.

Software Complexity Measures: Attributes

Software complexity metrics can be distinguished by the

attributes used for measurement. In this paper, we are

concentrating on static measure which can be classified

into three types:

1) Size based metrics

Size is one of the most essential attributes of software

systems. It controls the expenditure incurred for the

systems both in man-power and budget, for the

development and maintenance. These metrics specify the

complexity of software by size attributes and helps in

predicting the cost involvement for maintaining the

system. Size based metrics measures the actual size of the

software module. Metrics is originated from the basic

counts such as line numbers, volume, size, effort, length,

etc.

2) Control flow based metrics

Control flow based metrics measures the

comprehensibility of control structures. These metrics also

confine the relation between the logic structures in

program with its program complexity. These metrics are

originated from the control structure of a program [21].

3) Data flow based metrics

Data flow based metrics measure the usage of data and

their data dependency (visibility of data as well as their

interactions) [21].Structural testing criteria consider on the

knowledge of the internal structure of the program

implementation to derive the testing criteria. Test cases are

generated for actual implementation, if there is some

change in implementation then it leads to change in test

cases. They can be classified as, complexity, control flow

and data flow based criteria. The complexity based

criterion requires the execution of all independent paths of

the program; it is based on McCabe’s complexity concept.

For the control flow based criteria, testing requirements

are based on the Control Flow Graph (CFG). It requires

the execution of components (blocks) of the program

under test in condition of subsequent elements of the CFG

i.e. nodes, edges and paths. Another method is number of

unit tests needed to test every combination of paths in a

method. In Data Flow based criteria, both data flow and

control flow information are used to perform testing

requirements. These coverage criteria are based on code

coverage. Code coverage is the degree to which source

code of a program has been tested. Test coverage is

measured during test execution. Once such a criterion has

been selected, test data must be selected to fulfill the

criterion.

Complexity of software is measuring of software code

quality; it requires a model to convert internal quality

attributes to code reliability. High degree of complexity in

a component like function, subroutine, object, class etc. is

consider bad in comparison to a low degree of complexity

in a component. Software complexity measures which

enables the tester to counts the acyclic execution paths

through a component and improve software code quality.

In a program characteristic that is one of the responsible

factors that affect the developer’s productivity [8] in

program comprehension, maintenance, and testing phase.

There are several methods to calculate complexity

measures were investigated, e.g., Nesting Level, different

version of LOC, NPATH , McCabe’s cyclomatic number

IJARCCE
 ISSN (Online) 2278-1021

 ISSN (Print) 2319 5940

International Journal of Advanced Research in Computer and Communication Engineering
ISO 3297:2007 Certified

Vol. 5, Issue 7, July 2016

Copyright to IJARCCE DOI 10.17148/IJARCCE.2016.5781 419

,Data quality, Halstead’s software science, Function

Points, Token Counts, Chung’s live definition etc.

V. CONCLUSION

This paper focuses on two very significant factors of

complexity measurement of software which are coupling

and cohesion. An extensive study of approximately all

types of coupling and cohesion metrics has been reported

in this paper. The major categories are static coupling and

cohesion metrics and dynamic coupling and cohesion

metrics. From this in-depth study we find that the static

metrics are comparatively easy and simpler to collect

because there is no need to execute the software. Static

metrics can be obtained at very early stages of program

development this is the reason these metrics are widely

available. Static metrics are satisfactory to measure the

quantity attributes such as size and complexity but as far

as quality attributes such as reliability and testability are

concerned, use of static metrics are not accurate because

static metrics are evaluated only by means of static

inspection of the software artifact. Dynamic metrics are

calculated on the basis of the data collected during actual

execution of the system, and thus reinforce the quality

attributes explicitly such as chances of fault occurrences,

performance. Thus keeping in view the above limitations

of static metrics we see that the dynamic metrics are more

precise to use for complexity measurements. However the

computation process of dynamic metrics is difficult in

comparison to the static once. Also very little work has

been done in areas of dynamic coupling and cohesion

metrics and need further more investigations. So we can

conclude that to avoid computational efforts and also for

qualitative measurements, a hybrid approach of static and

dynamic metrics can proved to be beneficial one.

REFERENCES

[1] Ashutosh Mishra,vinayak srivastva (2012) “Conceptual and

Semantic Measures for Cohesion in Software Maintenance

“International Journal of Computer Applications (0975 –
8887)Volume 47– No.22, June 2012

[2] Rupinder.S and Hardeep.S(2010),“On Formal Models and Deriving

Metrics for Service-Oriented Architecture”, JOURNAL OF
SOFTWARE, VOL. 5, NO. 8, AUGUST 2010

[3] Varsha Mishra(2013), “Better Object Oriented Paradigm

Inheritance and Interface through Cohesion Metrics”, International
Journal of Computer Applications (0975 – 8887) Volume 66–

No.21, March 2013

[4] Varun Gupta(2010), “Dynamic cohesion measures for object-
oriented software”, Journal of Systems Architecture 57 (2011) 452–

462

[5] Himanshu Dua and Puneet Jai.K(2014), “Dynamic cohesion metrics
for aspect oriented programming” , International Journal of

Emerging Technologies in Computational and Applied Sciences

(IJETCAS).
[6] R. Martin. OO design quality metrics: An analysis of dependencies.

In Proceedings Workshop on Pragmatic and Theoretical Directions

in Object-Oriented Software Metrics, 1994.
[7] W. Li and S. Henry. Object-oriented metrics that predict

maintainability. The Journal of Systems and Software, 23(2):111-

122, 1993.
[8] L.C. Briand, J.W. Daly, and J.K. Wust. A unifed framework for

cohesion measurement in object-oriented systems. Empirical

Software Engineering: An International Journal, 3(1):65-117, 1998.

[9] L.C. Briand, S. Morasca, and V. Basili. Measuring and assessing

maintainability at the end of high-level design. In International
Conference on Software Maintenance, pages 88-97, Montreal,

Canada, 1993.

[10] L.C. Briand, S. Morasca, and V. Basili. Defining and validating
high-level design metrics. Technical Report CS-TR 3301,

Department of Computer Science, University of Maryland, College

Park, MD 20742, USA, 1994.
[11] L.C. Briand, J.W. Daly, and J.K. Wust. A unified framework for

cohesion measurement in object-oriented systems. Empirical

Software Engineering: An International Journal, 3(1):65-117, 1998.
[12] E. Arisholm, L.C. Briand, and A. Foyen. Dynamic coupling

measures for object- oriented software. IEEE Transactions on

Software Engineering, 30(8):491–506, 2004.
[13] Bieman J M, Ott L M. Measuring functional cohesion. IEEE

Transactions on Software Engineering, 1994, 20(8): 644-657.

[14] Ott L M, Bieman J M, Kang B K. Developing measures of class
cohesion for object oriented software. In Proc. The 7th Annual

Oregon Workshop on Software Metrics, Oregon, USA, 1995.

[15] Gupta N, Rao P. Program execution based module cohesion
measurement. In Proc. the 16th International Conference on

Automated on Software Engineering (ASE 2001), San Diego, USA,

Nov. 26-29, 2001, pp.144-153.
[16] Yacoub S, Ammar H, Robinson T. A methodology for

architectural-level risk assessment using dynamic metrics. In Proc.

11th Int. Symp. Software Reliability Eng, San Jose, Oct. 8-10, 2000,
pp.210-221.

[17] W.P. Stevens, G.J. Myers, and L. L. Constantine. Structured design.

IBM Systems Journal, 13(2):115-139, 1974.
[18] Marcela Genero, Mario Piattini and Coral Calero, “A Survey of

Metrics for UML Class Diagrams”, Object Technology Journal,

Vol. 4, No. 9, Nov-Dec 2005.
[19] R. Martin. OO design quality metrics: An analysis of dependencies.

In Proceedings Workshop on Pragmatic and Theoretical Directions

in Object-Oriented Software Metrics, 1994
[20] L.C. Briand, J.W. Daly, and J.K. Wust. A unifed framework for

coupling measurement in object-oriented systems. IEEE

Transactions on Software Engineering, 25(1):91-121, Jan/Feb 1999.
[21] W. Harrison, K. Magel, R. Kluczny, and A. Dekok, Applying

Software Complexity Metrics to Program Maintenance Compute,
vol. 15, pp. 65-79, 1982

